Discrete controller Design

Pole-Placement

Digital control

Dr. Ahmad Al-Mahasneh

Pole-Placement Control – Analytical

+ The response of a system is determined by the positions of its closed-loop poles. Thus, by placing the poles at the required points we should be able to control the response of a system.

Given the pole positions of a system, (9.3) gives the required transfer function of the controller as

$$D(z) = \frac{1}{HG(z)} \frac{T(z)}{1 - T(z)}.$$

T(z) is the required transfer function, which is normally in the form of a polynomial. The denominator of T(z) is constructed from the positions of the required roots. The numerator polynomial can then be selected to satisfy certain criteria in the system.

Example 9.3

The open-loop transfer function of a system together with a zero-order hold is given by

$$HG(z) = \frac{0.03(z+0.75)}{z^2 - 1.5z + 0.5}.$$

Design a digital controller so that the closed-loop system will have $\zeta = 0.6$ and $w_d = 3$ rad/s. The steady-state error to a step input should be zero. Also, the steady-state error to a ramp input should be 0.2. Assume that T = 0.2 s.

Solution

The roots of a second-order system are given by

$$z_{1,2} = e^{-\zeta \omega_n T \pm j \omega_n T} \sqrt{1 - \zeta^2} = e^{-\zeta w_n T} (\cos \omega_n T \sqrt{1 - \zeta^2} \pm j \sin \omega_n T \sqrt{1 - \zeta^2}).$$

Thus, the required pole positions are

$$z_{1,2} = e^{-0.6 \times 3.75 \times 0.2} (\cos(0.2 \times 3) \pm j \sin(0.2 \times 3)) = 0.526 \pm j0.360.$$

The required controller then has the transfer function

$$T(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + \dots}{(z - 0.526 + j0.360)(z - 0.526 - j0.360)}$$

which gives

$$T(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + \dots}{1 - 1.052 z^{-1} + 0.405 z^{-2}}.$$
(9.6)

We now have to determine the parameters of the numerator polynomial. To ensure realizability, $b_0 = 0$ and the numerator must only have the b_1 and b_2 terms. Equation (9.6) then becomes

$$T(z) = \frac{b_1 z^{-1} + b_2 z^{-2}}{1 - 1.052 z^{-1} + 0.405 z^{-2}}.$$
(9.7)

The other parameters can be determined from the steady-state requirements.

The steady-state error is given by

$$E(z) = R(z)[1 - T(z)].$$

For a unit step input, the steady-state error can be determined from the final value theorem, i.e.

$$E_{ss} = \lim_{z \to 1} \frac{z - 1}{z} \frac{z}{z - 1} [v]$$

or

$$E_{ss} = 1 - T(1). (9.8)$$

From (9.8), for a zero steady-state error to a step input,

T(1) = 1

From (9.7), we have

$$T(1) = \frac{b_1 + b_2}{0.353} = 1$$

or

 $b_1 + b_2 = 0.353,$

and

$$T(z) = \frac{b_1 z + b_2}{z^2 - 1.052z + 0.405}.$$
(9.10)

(9.9)

If K_v is the system velocity constant, for a steady-state error to a ramp input we can write

$$E_{ss} = \lim_{z \to 1} \frac{(z-1)}{z} \frac{Tz}{(z-1)^2} [1 - T(z)] = \frac{1}{K_v}$$

or, using L'Hospital's rule,

$$\left. \frac{dT}{dz} \right|_{z=1} = -\frac{1}{K_v T}.$$

Thus from (9.10),

$$\left. \frac{dT}{dz} \right|_{z=1} = \frac{b_1(z^2 - 1.052z + 0.405) - (b_1z + b_2)(2z - 1.052)}{(z^2 - 1.052z + 0.405)^2} = -\frac{1}{K_v T} = -\frac{0.2}{0.2} = -1,$$

giving

$$\frac{0.353b_1 - (b_1 + b_2)0.948}{0.353^2} = -1$$

or

$$0.595b_1 + 0.948b_2 = 0.124, \tag{9.11}$$

From (9.9) and (9.11) we obtain,

$$b_1 = 0.596$$
 and $b_2 = -0.243$.

Equation (9.10) then becomes

$$T(z) = \frac{0.596z - 0.243}{z^2 - 1.052z + 0.405}.$$

(9.12)

Equation (9.12) is the required transfer function. We can substitute in Equation (9.3) to find the transfer function of the controller:

$$D(z) = \frac{1}{HG(z)} \frac{T(z)}{1 - T(z)} = \frac{z^2 - 1.5z + 0.5}{0.03(z + 0.75)} \frac{T(z)}{1 - T(z)}$$

or,

$$D(z) = \frac{z^2 - 1.5z + 0.5}{0.03(z + 0.75)} \frac{0.596z - 0.243}{z^2 - 1.648z + 0.648}$$

which can be written as

$$D(z) = \frac{0.596z^3 - 1.137z^2 + 0.662z - 0.121}{0.03z^3 - 0.027z^2 - 0.018z + 0.015}$$
(9.13)

The step response of the system with the controller is shown in Figure 9.10.

Figure 9.10 Step response of the system

Example 9.6

The block diagram of a system is as shown in Figure 9.19. It is required to design a controller for this system with percent overshoot (PO) less than 17 % and settling time $t_s \le 10$ s. Assume that T = 0.1 s.

Figure 9.19 Block diagram for Example 9.6

Solution

The damping ratio, natural frequency and hence the required root positions can be determined as follows:

For
$$PO < 17\%$$
, $\zeta \ge 0.5$.
For $t_s \le 10$, $\zeta \omega_n \ge \frac{4.6}{t_s}$ or $\omega_n \ge 0.92$ rad/s.

Hence, the required pole positions are found to be

$$z_{1,2} = e^{-\zeta \omega_n T} \left(\cos \omega_n T \sqrt{1 - \zeta^2} + j \sin \omega_n T \sqrt{1 - \zeta^2} \right)$$

or

$$z_{1,2} = 0.441 \pm j0.451.$$

The z-transform of the plant, together with the zero-order hold, is given by

$$G(z) = \frac{z-1}{z} Z\left[\frac{0.1K}{s^2(s+0.1)}\right] = \frac{0.00484K(z+0.9672)}{(z-1)(z-0.9048)}.$$

It is clear from the figure that the root locus will not pass through the marked point by simply changing the d.c. gain. We can design a compensator as in Example 9.5 such that the locus passes through the required point, i.e.

The angle of G(z) at the required point is

 $\angle G(z) = \angle 0.441 + j0.451 + 0.9672 - \angle (0.441 + j0.451 - 1) - \angle (0.441 + j0.451 - 0.9048)$

or

$$\angle G(z) = \tan^{-1} \frac{0.451}{1.4082} - \tan^{-1} \frac{0.451}{-0.559} - \tan^{-1} \frac{0.451}{-0.4638} = -259^{\circ}.$$

Since the sum of the angles at a point in root locus must be a multiple of -180° , the compensator must introduce an angle of $-180 - (-259) = 79^\circ$. The required angle can be obtained using a compensator with a transfer function, and the angle introduced by the compensator is

$$\angle D(Z) = \angle (0.441 + j0.451 - n) - \angle (0.441 + j0.451 - p) = 79^{\circ}$$

or

$$\tan^{-1}\frac{0.451}{0.441-n} - \tan^{-1}\frac{0.451}{0.441-p} = 79^{\circ}.$$

If we choose n = 0.6, then

$$109^{\circ} - \tan^{-1} \frac{0.451}{0.441 - p} = 79^{\circ}$$

or

p = -0.340.

The transfer function of the compensator is thus

$$D(z) = \frac{z - 0.6}{z + 0.340}.$$

Figure 9.21 shows the root locus of the compensated system. Clearly the locus passes through the required point. The d.c. gain at this point is K = 123.9.

The time response of the compensated system is shown in Figure 9.22.

Figure 9.21 Root locus of the compensated system

Figure 9.22 Time response of the system