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Pole-Placement Control - Analytical

+ The response of a system is determined by the positions of its closed-loop poles. Thus, by placing the poles at
the required points we should be able to control the response of a system.

Given the pole positions of a system, (9.3) gives the required transfer function of the controller

as

_ 1 1'(z)
 HG() 1 =T(z)

D(z)

T(z) 1s the required transfer function, which is normally in the form of a polynomial.
The denominator of 7 (z) is constructed from the positions of the required roots.
The numerator polynomial can then be selected to satisfy certain criteria in the system.



Pole-Placement Control: example

Example 9.3

The open-loop transfer function of a system together with a zero-order hold is given by

HG ) — 0.03(z + 0.75)
T 2152405

Design a digital controller so that the closed-loop system will have ¢ = 0.6 and wy = 3 rad/s.
The steady-state error to a step input should be zero. Also, the steady-state error to a ramp
input should be 0.2. Assume that T = 0.2 s.

Solution

The roots of a second-order system are given by

210 = e COn =IO TN I — pmlnl (cos @, T/ 1 — 22 £ jsinw, Ty/1 — £2).
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Thus, the required pole positions are
210 = ¢ PO T02(605(0.2 x 3) £ jsin(0.2 x 3)) = 0.526 & j0.360.
The required controller then has the transfer function

bo+ b,z V4 bz 2+ bz 4. ..
(z —0.526 4+ j0.360)(z — 0.526 — ;j0.360)

I'(z)=

which gives
by + biz7 V4 bz 24 b33+ ...
B | — 1.052z7" + 0.405z72

We now have to determine the parameters of the numerator polynomial. To ensure realizability,
by = 0 and the numerator must only have the b, and b;terms. Equation (9.6) then becomes

I (z) (9.6)

biz7 '+ byz7?
T 11— 1052271 4 0.405:72
The other parameters can be determined from the steady-state requirements.
The steady-state error 1s given by

E(z) = R(Q[1 = T(2)].

T(z) (9.7)
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For a unit step input, the steady-state error can be determined from the final value theorem. i.e.

oz —1 z
E,,-Szllml — — l[U]

or

From (9.8), for a zero steady-state error to a step input,

T'(l)=1
From (9.7), we have
[ b
(1) = M+ Da _
0.353
or
by 4+ b, = 0.353, (9.9)
and
biz+1
T(z) = 12 + 52 . (9.10)

72 — 1.0527 + 0.405



Pole-Placement Control: example

[f K, is the system velocity constant, for a steady-state error to a ramp input we can write

Ey =1im S0 T2y =L
B 7—1 Z (z —1)? ) K,
or, using L*Hospital’s rule,
dT ]
dzl._, KT
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Thus from (9.10),

dT
dz

_ by(z2 = 1.0522 +0.405) — (b2 + by)(27 — 1.052) 1 0.2 |

(z2 — 1.052z + 0.405)2 K, T 0.2

=1

giving

0.353by — (b1 + 02)0.948

—1
0.3532

or

0.595b; + 0.948b, = 0.124, (9.11)
From (9.9) and (9.11) we obtain.

by = 0.596 and b, = —0.243.

Equation (9.10) then becomes

0.5967 — 0.243
T(z)= — —, (9.12)
7¢ — 1.0527 4+ 0.405




Pole-Placement Control: example

Equation (9.12) 1s the required transfer function. We can substitute in Equation (9.3) to find
the transfer function of the controller:

I T(2) 72 —1.52405 T(2)
HG(z) 1 —T(z) ~ 0.03(z4+0.75) 1 = T(2)

D(z) =

Or,

D(z) = 72— 152405  0.596z —0.243
T 0.03(z +0.75) 72 — 1.6487 4 0.648

which can be written as

0.5967° — 1.137z% + 0.6627 — 0.121
D(z) = —= s i 9.13)
0.03z3 —0.027z2 — 0.018z + 0.015

The step response of the system with the controller is shown in Figure 9.10.
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Figure 9.10 Step response of the system



Pole placement example

Example 9.6

The block diagram of a system is as shown in Figure 9.19. It is required to design a controller
for this system with percent overshoot (PO) less than 17 % and settling time f; < 10s. Assume
that 7 = 0.1 s.

R(z) D(z) —* ZOH |—» : » Y(z)
(s+0.1)

Figure 9.19 Block diagram for Example 9.6
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Solution

The damping ratio, natural frequency and hence the required root positions can be determined
as follows:
For PO < 17%, ¢ = 0.5.
4.6
Forty <10, ¢(w, = — or w, = 0.92rad/s.

\)

Hence, the required pole positions are found to be

Z1o = e Sl (CDS w,T+/1 —¢2 + jsin m,,Tﬁ)
or
Z12 = 0.441 £ j0.451.
The z-transform of the plant, together with the zero-order hold, 1s given by
o= ] e

s2(s +0.1) |

-
sy



Pole placement example

[t1s clear from the figure that the root locus will not pass through the marked point by simply
changing the d.c. gain. We can design a compensator as in Example 9.5 such that the locus
passes through the required point, i.e.

Hoot Locus

Imaginary Axis

-3 -2k -2 -1.€ -1 -0.c 0 0.c 1
Real Axiz

Figure 9.20 Root locus of uncompensated system
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The angle of G(z) at the required point is
LG(z) = £0.441 + jO.451 4 0.9672 — £(0.441 + j0.451 — 1) — £(0.441 4 j0.451 — 0.9048)
or

_; 0451 _; 0.451 _; 0451 .
£ tan —— —tan — = —259".
1.4082 —0.559 —0.4638

Since the sum of the angles at a point in root locus must be a multiple of — 180", the compensator
must introduce an angle of —180 — (—259) = 79°. The required angle can be obtained usin
a compensator with a transfer function, and the angle introduced by the compensator 1s

o
o

[D(Z) = £(0.44] + jO.451 — n) — £(0.44] + jO.451 — p) = T79°

or
0.451 0.451
fan” ! ——— _tan ——— —79°,

0.441 — n 0.441 — p

If we choose n = 0.6, then
0.451
109° —tan™" ————— =79°
0.441 — p

or

p = —0.340.



Pole placement example

The transfer function of the compensator is thus

z—0.6
D7) = ——.
7+ 0.340

Imaginary Axis

o

Figure 9.21 shows the root locus of the compensated system. Clearly the locus passes through
the required point. The d.c. gain at this pointis K = 123.9.
The time response of the compensated system is shown in Figure 9.22.

Root Locus

Figure 9.21
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Root locus of the compensated system
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Figure 9.22 Time response of the system
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